Nitric oxide modulates oxygen consumption by arteriolar walls in rat skeletal muscle.
نویسندگان
چکیده
To study the role of nitric oxide (NO) in regulating oxygen consumption by vessel walls, the oxygen consumption rate of arteriolar walls in rat cremaster muscle was measured in vivo during flow-induced vasodilation and after inhibiting NO synthesis. The oxygen consumption rate of arteriolar walls was calculated based on the intra- and perivascular PO2 values measured by phosphorescence quenching laser microscopy. The perivascular PO2 value of the arterioles during vasodilation was significantly higher than under control conditions, although the intravascular PO2 values under both conditions were approximately the same. Inhibition of NO synthesis, on the other hand, caused a significant increase in arterial blood pressure and a significant decrease in arteriolar diameter. Inhibition of NO synthesis also caused a significant decrease in both the intra- and perivascular PO2 values of the arterioles. Inhibition of NO synthesis increased the oxygen consumption rate of the vessel walls by 42%, whereas enhancement of flow-induced NO release decreased it by 34%. These results suggest that NO plays an important role not only as a regulator of peripheral vascular tone but also as a modulator of tissue oxygenation by reducing oxygen consumption by vessel walls. In addition, enhancement of NO release during exercise may facilitate efficient oxygen supply to the surrounding high metabolic tissue.
منابع مشابه
Vascular wall energetics in arterioles during nitric oxide-dependent and -independent vasodilation
Shibata, Masahiro, Kairong Qin, Shigeru Ichioka, and Akira Kamiya. Vascular wall energetics in arterioles during nitric oxide-dependent and -independent vasodilation. J Appl Physiol 100: 1793–1798, 2006. First published February 23, 2006; doi:10.1152/japplphysiol.01632.2005.—The objective of this study was to evaluate whether the nitric oxide (NO) released from vascular endothelial cells would ...
متن کاملEstimating oxygen consumption rates of arteriolar walls under physiological conditions in rat skeletal muscle.
To examine the effects of vascular tone reduction on O2 consumption of the vascular wall, we determined the O2 consumption rates of arteriolar walls under normal conditions and during vasodilation induced by topical application of papaverine. A phosphorescence quenching technique was used to quantify intra- and perivascular PO2 in rat cremaster arterioles with different branching orders. Then, ...
متن کاملEffect of a high-salt diet on oxidant enzyme activity in skeletal muscle microcirculation.
Increased salt intake attenuates the endothelium-dependent dilation of skeletal muscle arterioles by abolishing local nitric oxide (NO) activity. There is evidence of oxidative stress in arteriolar and venular walls of rats fed a high-salt diet, and depressed arteriolar responses to acetylcholine (ACh) in these rats are reversed by scavengers of reactive oxygen species (ROS). In this study, we ...
متن کاملC-peptide induces a concentration-dependent dilation of skeletal muscle arterioles only in presence of insulin.
In this study we tested the hypothesis that C-peptide alone or in conjunction with insulin may cause a dilation of skeletal muscle arterioles. First-order arterioles (88 μm) isolated from rat cremaster muscles were pressurized (65 mmHg), equilibrated in a Krebs bicarbonate-buffered solution (pH 7.4), gassed with 10% O2 (balance 5% CO2, 85% N2), and studied in a no-flow state. C-peptide administ...
متن کاملReduced influence of nitric oxide on arteriolar tone in hypertensive Dahl rats.
The aim of this study was to evaluate the influence of endogenous nitric oxide on resting microvascular tone in the Dahl salt-sensitive (DS) rat and to determine how this influence is altered in salt-induced hypertension. Intravital microscopy was used to examine the arteriolar network in the spinotrapezius muscle of DS rats maintained on low (0.45% NaCl) or high (4% NaCl) salt diets for 6-7 we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 289 6 شماره
صفحات -
تاریخ انتشار 2005